Insulin-receptor phosphotyrosyl-protein phosphatases.
نویسندگان
چکیده
Calmodulin-dependent protein phosphatase has been proposed to be an important phosphotyrosyl-protein phosphatase. The ability of the enzyme to attack autophosphorylated insulin receptor was examined and compared with the known ability of the enzyme to act on autophosphorylated epidermal-growth-factor (EGF) receptor. Purified calmodulin-dependent protein phosphatase was shown to catalyse the complete dephosphorylation of phosphotyrosyl-(insulin receptor). When compared at similar concentrations, 32P-labelled EGF receptor was dephosphorylated at greater than 3 times the rate of 32P-labelled insulin receptor; both dephosphorylations exhibited similar dependence on metal ions and calmodulin. Native phosphotyrosyl-protein phosphatases in cell extracts were also characterized. With rat liver, heart or brain, most (75%) of the native phosphatase activity against both 32P-labelled insulin and EGF receptors was recovered in the particulate fraction of the cell, with only 25% in the soluble fraction. This subcellular distribution contrasts with results of previous studies using artificial substrates, which found most of the phosphotyrosyl-protein phosphatase activity in the soluble fraction of the cell. Properties of particulate and soluble phosphatase activity against 32P-labelled insulin and EGF receptors are reported. The contribution of calmodulin-dependent protein phosphatase activity to phosphotyrosyl-protein phosphatase activity in cell fractions was determined by utilizing the unique metal-ion dependence of calmodulin-dependent protein phosphatase. Whereas Ni2+ (1 mM) markedly activated the calmodulin-dependent protein phosphatase, it was found to inhibit potently both particulate and soluble phosphotyrosyl-protein phosphatase activity. In fractions from rat liver, brain and heart, total phosphotyrosyl-protein phosphatase activity against both 32P-labelled receptors was inhibited by 99.5 +/- 6% (mean +/- S.E.M., 30 observations) by Ni2+. Results of Ni2+ inhibition studies were confirmed by other methods. It is concluded that in cell extracts phosphotyrosyl-protein phosphatases other than calmodulin-dependent protein phosphatase are the major phosphotyrosyl-(insulin receptor) and -(EGF receptor) phosphatases.
منابع مشابه
Site-specific dephosphorylation and deactivation of the human insulin receptor tyrosine kinase by particulate and soluble phosphotyrosyl protein phosphatases.
Insulin receptor tyrosine kinase activation, induced by insulin-stimulated autophosphorylation, was measured using a synthetic peptide containing residues 1142-1153 of the insulin receptor and shown to be reversed by both particulate and soluble phosphotyrosyl protein phosphatases from rat liver. Deactivation of the tyrosine kinase was highly sensitive to phosphatase action and was correlated b...
متن کاملDephosphorylation of insulin-receptor autophosphorylation sites by particulate and soluble phosphotyrosyl-protein phosphatases.
Insulin stimulates autophosphorylation of the insulin receptor on multiple tyrosines in three domains: tyrosines 1316 and 1322 in the C-terminal tail, 1146, 1150 and 1151 in the tyrosine-1150 domain, and possibly 953, 960 or 972 in the juxtamembrane domain. In the present work the sequence of dephosphorylation of the various autophosphorylation sites by particulate and cytosolic preparations of...
متن کاملPhosphotyrosyl protein phosphatases.
Enzyme-catalysed reversible protein phosphorylation is an important cellular regulatory mechanism (Nimmo & Cohen, 1977; Krebs & Beavo, 1979). Regulatory protein phosphorylation occurs most frequently on seryl and threonyl residues (Taborsky, 1974), and less frequently, on tyrosyl residues (Hunter, 1982). Protein phosphotyrosine [Tyr(P)] normally accounts for only 0.01-0.050o of the total protei...
متن کاملPurification and partial sequence analysis of pp185, the major cellular substrate of the insulin receptor tyrosine kinase.
Insulin stimulates the tyrosine phosphorylation of a 185-kDa putative cytosolic substrate protein (pp185) in diverse cell types. After intravenous insulin infusion into the live intact rat, pp185 and the 95-kDa insulin receptor beta-subunit were the major proteins that tyrosine phosphorylated in liver, skeletal muscle, and adipose tissue. Both proteins were maximally phosphorylated within 30 s,...
متن کاملCentral Regulation of Metabolism by Protein Tyrosine Phosphatases
Protein tyrosine phosphatases (PTPs) are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS) signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 256 3 شماره
صفحات -
تاریخ انتشار 1988